

Beam-Beam Effects in Tevatron: Past, Present and Future

Vladimir Shiltsev for Beam-Beam Team

Yu.Alexahin, J.Annala, A.Tollestrup, P.Lebrun, A.Xiao, J.P.Carneiro, XL.Zhang, M.Martens, V.Lebedev, V.Shiltsev, T.Sen, A.Valishev, P.Ivanov

Introduction

Accelerator Complexity Levels:

- Zero-Beam:
 - magnets, vacuum, optics,alignment, injection, RF, etc
- ← Very well understood, good models, ready to build

- One-Beam:
 - instabilities, Space Charge,
 cooling, beam loading
- ← some understanding, cures known, lots of modeling ...still some risk

- Two-Beam:
 - Beam-Beam EffectsElectron/Ion Clouds

risky, experiment ahead of theory/modeling (esp. for hadron colliders)

Beam-Beam Effects: Basics

What we knew in 2001

0.56

0.57

0.58

horz tune

0.59

0.60

0.61

TM-1970 (1995)

Run Ib a) 6x6 → 2 head-on +10 long-range IPs

b) at 150: -7% p's -3% pbars

c) ramp-LB: -3% p's -10% pbar

d) dN_a ~ Emittance (4...14 pi)

e) shrinkage at 150 - small aperture?

f) nothing particularly bad in collisions

Run II: a) 36x36 → 2 HO +70 LR

- b) same head-on tune shifts
- c) end-of-train pbar bunches be different in collisions

 $\xi = \frac{N_p r_p}{4\pi\varepsilon_p} \approx 0.025$

Overall = "should be tolerable...as in Run I"

... but 36xn studies in 1995 raised concerns

D. SIERGIEJ, D. FINLEY, AND W. HERR

Figure 2: Measured and Calculated Pbar Tunes for

Tevatron Inefficiencies: 2001

Store #535 Jun 15, 2001

No Other Beam - No Losses! (Pbar Only Store)

Tevatron Inefficiencies: 2001-2005

L-Lifetime Affected by Beam-Beam

Tevatron Inefficiencies: 2005

Beam Loss at Injection Helix

$$\frac{dN_{a,p}}{N_{a,p}} \propto \sqrt{t} \cdot \varepsilon_{a,p}^2 N_{p,a} Q^{\prime 2}_{a,p} \times F_1(S_{a-p}, Q_{a,p}, \frac{dP}{P})$$

Octupoles to Drop Chromaticity Q'=dQ/(dp/p)

Beam Loss on Ramp

$$\frac{dN_{a,p}}{N_{a,p}} \propto \varepsilon_{a,p}^2 N_{p,a} \times F_2(S_{a-p}, Q_{a,p}, Q'_{a,p})$$

Beam Loss in Collisions

$$\frac{dN_p}{N_p dt} \propto \frac{N_a}{\varepsilon_a^2} \times F_3(Q_p, Q'_p) \qquad \frac{dN_a}{N_a dt} \propto N_p \frac{\varepsilon_a^2}{S_{a-p}^3} \times F_4(Q_a, Q'_a)$$

For Example: Function $F_3(Q_{x,y})$

Science and Art of Tevatron Tuning

Pbar Bunch Emittance Growth

For Curious: "Alvins' Effect"

Summary on Beam-Beam Effects:

- "Beam-Beam" manifests itself in:
 - beam losses at 150, ramp, squeeze, in store
 - emittance growth in collisions/scraping at 150 GeV
- · BB-Losses of protons and pbars are comparable!
- · Long range beam-bean effects dominate
- Head-On effects determine only:
 - proton losses in collisions
 - · pbar size growth if mistuned
- Most effective counter-measures so far:
 - · helix redesigned everywhere (inj, ramp, squeeze, LB)... several times
 - physical apertures opened by Tev alignment
 - · beam emittances reduced in injectors and by Tev alignment
 - · chromaticity dropped by octupoles in 2005 (dampers in 2003-04)
- · Major scaling laws with predictive power revealed
- Theory and simulations are far behind experiment

Tev Inefficiencies: Projections for FY09

	Mar-Apr'05	IF RUN "AS NOW"!	
	Now	3xN_a	3xN_a 1.4xEmm
P at 150	$4.4\% \pm 2.8$	13.2	13.2
A at 150	$3.9\% \pm 2.2$	3.9	7.8
Pramp	$3.4\% \pm 0.9$	8.2	8.2
A ramp	$4.7\% \pm 1.2$	4.7	8.4
P squeeze	$1.0\% \pm 0.4$	3.0	3.0
A squeeze	1.5% ± 0.5	1.5	2.0
Total before LB	18.9% ± 3.9	34.5	42.6
Tau_p at LB	160 hr \pm 60	~60	~100
Tau_a at LB	<u> 160 hr</u> ± <u>60</u>	<u>~160</u>	<u>~80</u>
Total in Tau_L	<i>10%</i> ± <i>5</i>	~13%	~13%
Total Int-L	28%±7	44%	50%

What Will We Work On:

- Better WP for protons at 150, ramp and at LB: 7/12<Q<3/5
- Stabilize pbar tunes in collisions
- Increase helix on ramp and at LB (higher voltage seps, more)
- Drop Q' on ramp and in collisions (octupoles, FB?)
- Reduce beam emittances (inj dampers, MI, RR, AA, Booster)
- · Adjust betatron phase advance between two IPs
- Even better working point 3/5 < Q < 7/11
- · Change bunch structure, e.g. 46x41 (396 ns spacing) or likes
- Beam-Beam Compensation with TELs

Current Betatron Tune Area

New Betatron Tunes

